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Abstract. A generic fusion problem is studied for multiple sensors whose
outputs are probabilistically related to their inputs according to unknown
distributions. Sensor measurements are provided as iid input-output sam-
ples, and an empirical risk minimization method is described for design-
ing fusers with distribution-free performance bounds. The special cases
of isolation and projective fusers for classifiers and function estimators,
respectively, are described in terms of performance bounds. The isolation
fusers for classifiers are probabilistically guaranteed to perform at least
as good as the best classifier. The projective fusers for function estima-
tors are probabilistically guaranteed to perform at least as good as the
best subset of estimators.

1 Introduction

The information fusion problems have been solved for centuries in various dis-
ciplines, such as political economy, reliability, pattern recognition, forecasting,
and distributed detection. In multiple sensor systems, the fusion problems arise
naturally when overlapping regions are covered by the sensors. Often, the in-
dividual sensors can themselves be complex, consisting of sophisticated sensor
hardware and software. Consequently, sensor outputs can be related to the ac-
tual object features in a complicated manner, and these relationships are often
characterized by probability distributions. Early information fusion methods re-
quired statistical independence of sensor errors, which greatly simplified the
fuser design; for example, a weighted majority rule suffices in detection prob-
lems. Such solutions are not applicable to current multiple sensor systems, since
the sensors measurements can be highly correlated and consequently violate the
statistical independence property. Another classical approach to fuser design is
the Bayesian method that minimizes a suitable expected risk, which relies on
analytical expressions for sensor distributions. Deriving the required closed-form
sensor distributions is very difficult since it often requires the knowledge of areas
such as device physics, electrical engineering, and statistical modeling. Partic-
ularly when only a finite number of measurements are available, the selection
of a fuser from a carefully chosen function class is easier, in a fundamental
information-theoretic sense, than inferring completely unknown sensor distribu-
tions [21].



In operational sensor systems measurements are collected by sensing objects
and environments with known parameters. Thus fusion methods that utilize such
empirical observational or experimental data will be of high practical relevance.
In this paper, we present a brief overview of rigorous approaches for designing
such fusers based on the empirical process theory [21] to provide performance
guarantees based on finite samples. We briefly describe a general fuser design
approach and illustrate it using a vector space method. A more detailed account
of the generic sensor fusion problem can be found in [18]. The problem of com-
bining outputs of multiple classifiers is a special case of the generic sensor fusion
problem, wherein the training sample corresponds to the measurements. We de-
scribe the isolation fuser methods for classifiers to probabilistically ensure that
fuser’s performance guarantees are at least as good as those of best classifier.
The fusion of function estimators is another special case of the sensor fusion
problem which is of practical utility. We then describe the nearest-neighbor pro-
jective fuser for function estimators that performs at least as good as the best
projective combination of the estimators. Both isolation and projective fusers
have been originally developed for the generic sensor fusion problem, and we
sharpen the general performance results for these special cases.

This paper presents a brief account of results from other papers. We describe
the classical sensor fusion methods in Section 2. We present a generic sensor
fusion problem and a solution using empirical risk minimization in Section 3. We
describe the problem of fusing classifiers and function estimators in Sections 4
and 5, respectively. The original notations from the respective areas are retained
in the individual sections; while it results in a non-uniform notation, it makes it
easier to relate these results to the individual areas.

2 Classical Fusion Problems

Fusion methods for multiple sources to achieve performances exceeding those
of individual sources have been studied in political economy models in 1786
and composite methods in 1818. In the twentieth century, fusion methods have
been applied in a wide spectrum of areas such as reliability, forecasting, pattern
recognition, neural networks, decision fusion, and statistical estimation. A brief
overview of early information fusion works can be found in [7]. The problem
of fusing classifiers is relatively new and is first addressed in a probabilistic
framework by Chow [1] in 1965.

When sensor distributions are known, several fusion rule estimation problems
have been solved under various formulations. A simpler version of this problem
is the Condorcet jury model (see [4] for an overview), where a majority rule
can be used to combine 1-0 probabilistically independent decisions of a group of
N members. If each member has probability p of making a correct decision, the

probability that the majority makes the correct decision is pN =
N
∑

i=N/2

(

N
i

)

pi(1−

p)N−i. Then we have an interesting dichotomy: (a) if p > 0.5, then pN > p and
pN → 1 as N → ∞; and (b) if p < 0.5, then pN < p and pN → 0 as N → ∞.



For the boundary case p = 0.5 we have pN = 0.5. Interestingly, this result
has been rediscovered by von Neumann in 1959 in building reliable computing
devices using unreliable components by taking a majority vote of duplicated
components. For multiple classifiers, a weighted majority fuser is optimal [1]
under statistical independence, and the fuser weights can be derived in a closed-
form using the classifier detection probabilities. Over the past few years, multiple
classifier systems have witnessed an extensive interest and growth [5, 23].

The distributed detection problem [22] studied extensively in the target track-
ing area can be viewed as a generalization of the above two problems. The
Boolean decisions from a system of detectors are combined by minimizing a
suitably formulated Bayesian risk function. The risk function is derived from
the detector densities and the minimization is typically carried out using an-
alytical or deterministic optimization methods. In particular, the risk function
used for classifier fusion in [1] corresponds to the misclassification probability
and its minima is achieved by the weighted majority rule. In these works, the
sensor distributions are assumed to be known, which is reasonable in their do-
mains. While several of these solutions can be converted into sample-based ones
[9], these are not primarily designed for measurements. As evidenced in prac-
tical multiple sensor systems and classifiers, it is more pragmatic to have the
measurements rather than the error distributions.

3 A Generic Sensor Fusion Problem

We consider a multiple sensor system of N sensors, where sensor Si, i = 1, 2, . . . ,
N , outputs Y (i) ∈ <d corresponding to input X ∈ <d according to distribution
PY (i)|X . Intuitively, input X is the “measured” quantity such as presence of a
target or a value of feature vector. The expected error of sensor Si is defined as

I(Si) =

∫

C
(

X,Y (i)
)

dPY (i),X ,

where C : <d×<d 7→ < is the cost function. Here, I(Si) is a measure of how good
sensor Si is in “measuring” input feature X . If Si is a detector [22] or classifier
[2], we can have X ∈ {0, 1} and Y (i) ∈ {0, 1}, where X = 1 (0) corresponds
to presence (absence) of a target. Then I(Si) =

∫ [

X ⊕ Y (i)
]

dPY (i),X is the
probability of misclassification (false alarm and missed detection) of Si, where
⊕ is the exclusive-OR operation 1 .

The measurement error corresponds to the randomness in measuring a par-
ticular value of feature X , which is distributed according to PY (i)|X . The sys-

tematic error at X corresponds to E[C(X,Y (i))|X ] which must be 0 in the case
of a perfect sensor. This error is often referred to as the bias error.

We consider a fuser f : <Nd 7→ <d that combines the outputs of sensors
Y =

(

Y (1), Y (2), . . . , Y (N)
)

to produce the fused output f(Y ). We define the

1 Alternatively, X can be expanded to include the usual ”feature” vector and C(.) can
be redefined so that I(Si) is misclassification probability.



expected error of the fuser f to be

IF (f) =

∫

C(X, f(Y ))dPY,X

where Y =
(

Y (1), Y (2), . . . , Y (N)
)

. The objective of fusion is to achieve low
values of IF (f), and for this both systematic and measurement errors must be
taken into account. The fuser is typically chosen from a family of fusion rules
F = {f : <Nd 7→ <d} which could be either explicitly or implicitly identified.
The expected best fusion rule f∗ satisfies IF (f∗) = min

f∈F
IF (f). For example, if F

is a set of sigmoidal neural networks obtained by varying the weight vector for
a fixed architecture, then f∗ = fw∗ corresponds to the weight vector w∗ that
minimizes IF (.) over all weight vectors.

In this formulation, since IF (.) depends on PY,X , f∗ cannot be computed
even in principle if the distribution is not known. We consider that only an
independently and identically distributed (iid) l-sample (X1, Y1), (X2, Y2), . . . ,

(Xl, Yl) is given, where Yi =
(

Y
(1)
i , Y

(2)
i , . . . , Y

(N)
i

)

and Y
(j)
i is the output of Sj

in response to input Xi. Our goal is to obtain an estimator f̂ , based only on a
sufficiently large sample, such that

P lY,X

[

IF (f̂) − IF (f∗) > ε
]

< δ (1)

where ε > 0 and 0 < δ < 1, and P lY,X is the distribution of iid l-samples. As per

this condition the “error” of f̂ is within ε of optimal error (of f∗) with probability

1 − δ, irrespective of the sensor distributions. Since f̂ is to be “chosen” from a
potentially infinite set, namely F , based only on a finite sample, this condition
is a reasonable target. Strictly stronger conditions are generally not possible to
achieve. For example, consider the condition P lY,X [IF (f̂) > ε] < δ for the case

case of classifiers F = {f : [0, 1]N 7→ {0, 1}}. This condition cannot be satisfied,
since for any classifier f ∈ F , there exists a distribution for which IF (f) > 1/2−ρ
for any ρ ∈ [0, 1] (see Theorem 7.1 of [2] for details).

Consider a simple two-sensor system such that Y (1) = a1X + Z, where Z is
normally distributed with zero mean, and is independent of X , i. e. a constant
scaling error and a random additive error. For the second sensor, we have Y (2) =
a2X + b2, which has a scaling and bias error. Let X be uniformly distributed
over [0, 1], and C[X,Y ] = (X − Y )2. Then, we have I(S1) = (1 − a1)

2 and
I(S2) = (1 − a2 − b2)

2, which are non zero in general. For

f
(

Y (1), Y (2)
)

=
Y (1)

2a1
+

1

2a2
(Y (2) − b2).

we have IF (f) = 0, since the bias b2 is subtracted from Y (2) and the multipliers
cancel the scaling error. Such fuser can be designed only with a significant insight
into sensors, in particular with a detailed knowledge about the distributions. To
illustrate the effects of finite samples, we generate three values for X given by



{0.1, 0.5, 0.9} with corresponding Z values given by {0.1,−0.1,−0.3}. The corre-
sponding values for Y (1) and Y (2) are given by {0.1a1+0.1, 0.5a1−0.1, 0.9a1−0.3}
and {0.1a2 + b2, 0.5a2 + b2, 0.9a2 + b2} respectively. Consider a linear fuser
f

(

Y (1), Y (2)
)

= w1Y
(1) + w2Y

(2) + w3. The following weights enable the fuser
outputs to exactly match X values for each measurement:

w1 =
1

0.2 − 0.4a1
, w2 =

1

0.4a2
and w3 =

0.1a1 + 0.1

0.4a1 + 0.1
−

0.1a2 + b2
0.4a2

.

While these weights achieve zero error on the measurements they do not achieve
zero value for IF (even though a fuser with zero expected error exists and can be
computed if the sensor distributions are given). The idea behind the criterion in
Eq 1 is to achieve performances close to optimal using only a sample. To achieve
this a suitable F is selected first, from which a fuser is chosen to achieve small
error on a sufficiently large sample, as will be illustrated subsequently.

Due to the generic nature of the sensor fusion problem described here, it is
related to a number of similar problems in a wide variety of areas. A detailed
discussion of these aspects can be found in [18].

3.1 Empirical Risk Minimization

Consider that the empirical error estimate

Iemp(f) =
1

l

l
∑

i=1

[

Xi − f
(

Y
(1)
i , Y

(2)
i , . . . , Y

(N)
i

)]2

is minimized by f̂ ∈ F . Such a method corresponds to an ad hoc approach of
choosing a class of fusers such as neural networks or linear fusers, and choosing
a particular fuser to minimize the error within the class. Performance of such
method, including the basic feasibility, depends on the fuser class and the com-
plexity of minimizing the empirical error. For example, if F has finite capacity
[21], then under bounded error, or bounded relative error for sufficiently large

sample, we have P lY,X

[

IF (f̂) − IF (f∗) > ε
]

< δ for arbitrarily specified ε > 0

and δ, 0 < δ < 1. Typically, the required sample size is expressed in terms of ε
and δ and the parameters of F . The most general result [13] that ensures this
condition is based on the scale-sensitive dimension, which establishes the basic
tractability of this problem. But this general method often results in very loose
bounds for the sample size, and tighter estimates are possible by utilizing specific
properties of F .

If F is a vector space of dimensionality dV , we have the following results[12]:

(a) the sample size is a simple function of dV , (b) f̂ can be computed using
least square methods in polynomial time, and (c) no smoothness conditions are
required on the functions or distributions. For simplicity consider that X ∈ [0, 1]

and Y ∈ [0, 1]N . Let f∗ and f̂ denote the expected best and empirical best fusion



functions chosen from a vector space F of dimension dV and range [0, 1]. Given
an iid sample of size

512

ε2

[

dV ln

(

64e

ε
+ ln

64e

ε

)

+ ln(8/δ)

]

,

we have P
[

IF (f̂) − IF (f∗) > ε
]

< δ (see [12] for details). This method subsumes

two very important cases [12]:

(a) Potential Functions: The potential functions where fi(y) is of the form
exp((y − α)2/β) for suitably chosen constants α and β, constitute an ex-
ample of the vector space method.

(b) Special Neural Networks: In two-layer sigmoidal networks of [6], the unknown
weights are only in the output layer, which enables us to express each network

in the form
dV
∑

k=1

aiηi(y) with universal ηi(.)’s.

Similar sample size estimates have been derived for fusers based on feedfor-
ward neural networks in [10]. Also non-linear statistical estimators can be em-
ployed to estimate the fuser based on the sample, such as the Nadaraya-Watson
estimator [12]. The main limitation of empirical risk minimization approach is

that f̂ is only guaranteed to be close to f ∗ but there are no guarantees that the
latter is any good. While it is generally true that if F is large enough, f ∗ would
perform better than best sensor, it is indeed possible that it performs worse than
worst sensor. Systematic approaches such as isolation fusers [17] and projective
fusers [15] would be useful to ensure the fuser performance. We will subsequently
discuss the special cases of isolation and projective fusers for classifiers [11] and
function estimators [19], respectively. We note that projective fusers have also
been applied to classifiers [11] and isolation fusers have also been applied to
function estimators [16].

3.2 Example

We consider 5 classifiers such that Y ∈ {0, 1}5 such that X ∈ {0, 1} corresponds
to “correct” class, which is generated with equal probabilities, i. e., P (X = 0) =
P (X = 1) = 1/2 [20]. The error of classifier Ci, i = 1, 2, . . . , 5, is described as
follows: the output Y (i) is correct decision with probability of 1−i/10, and is the
opposite with probability i/10. The task is to combine the outputs of classifiers

Sample Test C1 C2 C3 C4 C5 Nadaraya-
Size set Watson

100 100 7.0 20.0 33.0 35.0 55.0 12.0
1000 1000 11.3 18.5 29.8 38.7 51.6 10.6

10000 10000 9.5 20.1 30.3 39.8 49.6 8.58
50000 50000 10.0 20.1 29.8 39.9 50.1 8.860

Table 1. Percentage error of Nadaraya-Watson estimator and individual classifiers.



Sample Test Bayesian Empirical Nearest Nadaraya-
Size Size Fuser Decision Neighbor Watson

100 100 91.91 23.00 82.83 88.00
1000 1000 91.99 82.58 90.39 89.40

10000 10000 91.11 90.15 90.81 91.42
50000 50000 91.19 90.99 91.13 91.14

Table 2. Correct classification percentage of fusers.

to predict the correct class. The percentage error of the individual classifiers and
the fused system based on the Nadaraya-Watson estimator is presented in Table
1. Note that the fuser is consistently better than the best classifier C1 beyond
the sample size of 1000. The performance results of Nadaraya-Watson estimator,
empirical decision rule, nearest neighbor rule, and Bayesian rule based on the
analytical formulas are presented in Table 2. The Bayesian rule is computed
based on the formulas used in the data generation and is provided for comparison
only.

4 Isolation Fusers for Classifiers

Over the past decades several methods, such as nearest neighbor rules, neural
networks, tree methods, and kernel rules, have been developed for designing clas-
sifiers. Often, the classifiers are quite varied and their performances are charac-
terized by various smoothness and/or combinatorial parameters [2]. The designer
is thus faced with a wide variety of choices which are not easily comparable. It
is generally known that a good fuser outperforms the best classifier, and at the
same time, a bad fuser choice can result in a performance worse than the worst
classifier. Thus it is very important to employ fusion methods that provide con-
crete performance guarantees – in particular, for the fuser to be reasonable it
must perform at least as well as the best classifier.

We are given an independently and identically distributed (iid) sample (X1, Y1),
(X2, Y2), . . ., (Xn, Yn), according to an unknown distribution PX,Y , where Xi ∈
<d and Yi ∈ {0, 1}. The problem is to design a classifier φ : <d 7→ {0, 1} based
on the sample that ensures a small value for the probability of misclassification

L(φ) =

∫

X

I{φ(X)6=Y }dPX,Y ,

where ID(x) is the indicator function of the set D ⊆ <d such that IC(x) = 1
if x ∈ C and IC(x) = 0 otherwise. We often suppress the operand x when it is
clear from the context.

For φ ∈ H, the empirical error of misclassification is given by

L̂(φ) =
1

n

n
∑

i=1

I{φ(Xi)6=Yi}.



Let φ̂ minimize L̂(.) over H. If H has finite Vapnik-Chervonenkis dimension VH,
we have [2]

PnX,Y

[

L(φ̂) − min
φ∈H

L(φ) > ε

]

≤ δ

for sufficiently large n, irrespective of the distribution PX,Y . We are given N
such classifiers corresponding to the classes H1,H2, . . . ,HN such that

PnX,Y

[

L(φ̂i) − min
φ∈Hi

L(φ) > ε

]

≤ δi

where φ̂i minimizes L̂(.) over Hi. Our objective is to “fuse” the classifier outputs
so that the fused system performs at least as well as the best individual classifier
based on the sample only. We next describe a method based on the isolation
property that enables us to compare the fused system with the best individual
classifier [11]. This method is simple to apply and requires easily satisfiable
criteria.

4.1 Single Classifier

The lowest possible error achievable by any deterministic classifier is given by
the Bayes error L(φ∗), where φ∗ : <d 7→ {0, 1} is defined as

φ∗(x) =

{

1 if PX,Y [Y = 1|X = x] ≥ PX,Y [Y = 0|X = x]
0 otherwise

Since the distribution is not known, φ∗ cannot be computed. The performance
of φ̂ that minimizes L̂(.) can be characterized using the properties of H.

Let A be a collection of measurable sets of Rd. For (z1, z2, . . . , zn) ∈ {<d}n,
let NA(z1, z2, . . . , zn) denote the number of different sets in {{z1, z2, . . . , zn}∩A :
A ∈ A}. The nth shatter coefficient of A is

s(A, n) = max
(z1,z2,...,zn)∈{<d}n

NA(z1, z2, . . . , zn).

Then, the Vapnik-Chervonenkis (VC) dimension of A, denoted by VA, is the
largest integer k ≥ 1 such that s(A, k) = 2k. The following important identity
[21] relates the shatter coefficient to VC dimension:

s(A, n) =

{

2n if n ≤ VA

2n
VA

VA! if n > VA

Then we have P nX,Y

[

sup
φ∈A

|L̂(φ) − L(φ)| > ε

]

≤ 8s(A, n)e−nε
2/32. which in turn

implies PnX,Y

[

L(φ̂) − min
φ∈H

L(φ)| > ε

]

≤ 8s(H, n)e−nε
2/128. Thus, given a sample

of size n = 128
ε2 (ln s(H, n) + ln(8/δ)) we have

PnX,Y

[

L(φ̂) − min
φ∈H

L(φ) > ε

]

< δ,

irrespective of the distribution PX,Y .



4.2 Isolation Fusers

We consider a family of fuser functions F : {f : {0, 1}N 7→ {0, 1}} such that the

fused output is given by f [φ̂1(X), φ̂2(X), . . . , φ̂N (X)], denoted by f(Z), where

Z = (φ̂1(X), φ̂2(X), . . . , φ̂N (X)). The error probability of the fused system is

LF (f) =

∫

I{f(Z)6=Y }dPX,Y .

Note that Z is a deterministic function of X given the sample. For computational
convenience, we utilize the following alternative formula

LF (f) =

∫

[f(Z) − Y ]2dPX,Y .

Note that |F| ≤ 22N

since F consists of at most all Boolean functions on N
variables. Consider the function class

G = {f(φ1(X), φ2(X), . . . , φN (X)) : φ1 ∈ H1, φ2 ∈ H2, . . . , φN ∈ HN} .

Here f(φ1(.), φ2(.), . . . , φN (.)) specifies a subset of <d, and hence G specifies a
family of sets of <d.

The fuser is obtained in two steps: (a) a training set (Z1, Y1), (Z2, Y2), . . .,

(Zn, Yn), where Zi = (φ̂1(Xi), φ̂2(Xi), . . . , φ̂N (Xi)), is derived from the classifiers
and the original sample, and (b) the fuser is derived by minimizing empirical
error over F . Let f∗ minimize LF (.) over F . Consider the empirical error

L̂F (f) =
1

n

n
∑

i=1

[f(Zi) − Yi]
2.

Let f̂ minimize L̂F (.) over F .
If one of the classifier is to be chosen, the lowest achievable error is given

by
N

min
i=1

L(φ∗i ). Since the classifiers can be correlated in an arbitrary manner, the

empirically best classifier φ̂min = argmin
i
L̂(φ̂i) yields the following guarantee

PnX,Y

[

L(φ̂min) −
N

min
i=1

L(φ∗i ) > ε

]

< δ1 + δ2 + . . .+ δN .

The fuser, thus, provides a better guarantee if δF < δ1 + δ2 + . . .+ δN where

PnX,Y

[

LF (f̂) −
N

min
i=1

L(φ∗i ) > ε

]

< δF .

The fuser class F satisfies the isolation property [17] if it contains the fol-
lowing N functions: for all i = 1, 2, . . . , N we have fi(z1, z2, . . . , zN ) = zi. This
property is trivially satisfied if F consists of all Boolean functions of N variables.



Although it is sufficient to include N functions in F to satisfy this property, in
general a richer class performs better in practice [11].

If the fuser class F satisfies the isolation property, then fuser f̂ provides

better guarantee than the best classifier under the condition |F| ≤ 1
2

N
∑

i=1

δie
ε2n/2

(see [11] for the proof). A minimal realization of this result can be based on
F = {f1, f2, . . . , fn} as per the isolation property. We wish to emphasize that
this fusion method can be easily applied without identifying the best classifier,
while still ensuring its performance in the fused system. The above condition
can also be expressed in terms of the VC dimensions as follows

|F| ≤ 4

N
∑

i=1

(n)VHi

VHi
!
e−ε

263n/128.

by noting that δi = 8(n)
VHi

VHi
! e−ε

2n/128 for n > max(VH1 , VH2 , . . . , VHN
) [21].

5 Projective Fusers for Function Estimation

The problem of function estimation based on empirical data arises in a number of
disciplines such as statistics, systems theory, and computer science. As a result,
there has been a profusion of function estimators, whose performance conditions
could be quite involved and beyond the expertise of an average practitioner.
Nevertheless, several of these estimators are based on considerable practical and
theoretical insights, and it would be most desirable to retain their strengths.

We are required to estimate a function f : [0, 1]d 7→ [0, 1], based on a finite
sample (X1, f(X1)), (X2, f(X2)), . . . , (Xl, f(Xl)) where X1, X2, . . . , Xl, for l <
∞, are iid according to an unknown distribution PX on [0, 1]d. For an estimator

f̂ of f we consider the expected square error given by

I(f̂) =

∫

(f(X) − f̂(X))2dPX .

We are given N previously computed function estimators (as in [14]) each ob-

tained by using an existing method. The individual estimator f̂i could be a po-
tential function estimator, radial basis function, k-nearest neighbor estimator,
regressogram, kernel estimator, regression tree or another estimator.

Given the estimators f̂1, f̂2, . . . , f̂N , we consider that the fuser is a function
fF : [0, 1]N 7→ [0, 1] such that fF (X, f̂1(X), f̂2(X), . . . , f̂N(X)) is the fused es-

timate of f(X). The expected and empirical errors of the fuser are respectively
given by

I(fF ) =

∫

[f(X) − fF (X, f̂1(X), f̂2(X), . . . , f̂N (X))]2dPX

Î(fF ) =
1

l

l
∑

i=1

[f(Xi) − fF (Xi, f̂1(Xi), f̂2(Xi), . . . , f̂N (Xi))]
2.



5.1 Class of Projective Fusers

A projective fuser [15], fP , corresponding to a partition P = {π1, π2, . . . , πk},

k ≤ N , of input space [0, 1]d of X (πi ⊆ [0, 1]d,
k
⋃

i=1

πi = [0, 1]d, and πi ∩ πj = φ

for i 6= j), assigns to each block πi to an estimator f̂j such that

fP (X, f̂1, . . . , f̂N ) = f̂j(X)

for all X ∈ πi. For simplicity, we denote fP (X, f̂1, . . . , f̂N ) by fP (X). An op-

timal projective fuser, denoted by fP∗ , minimizes I(.) over all projective fusers
corresponding to all partitions of [0, 1]d and assignments of blocks to estimators.

We define the error curve of the estimator f̂ for f as E(X, f̂) = (f(X) −

f̂(X))2. The projective fuser based on lower envelope of error curves is defined
by

fLE(X, f̂1, . . . , f̂N) = f̂iLE(X)(X)

where iLE(X) = arg min
i=1,2,...,N

E(X, f̂i). In other words, fLE(X, f̂1, . . . , f̂N ) sim-

ply outputs the estimator with the lowest error at X . Thus, we have E(X, fLE) =
N

min
i=1

E(X, f̂i), or equivalently the error curve of fLE is the lower envelope with

respect to X of the set of error curves {E(X, f̂1), . . . , E(X, f̂N )}.

5.2 Nearest Neighbor Projective Fuser

We partition the space of X into Voronoi regions V (X1), V (X2), . . . , V (Xl) such
that

V (Xj) = {X :‖ X −Xj ‖<‖ X −Xk ‖ for all k = 1, 2, . . . , l; k 6= j}

where ‖ . ‖ is the Euclidean metric. The points equidistant from more than one
sample point are arbitrarily assigned to one of the regions. We assume that all
Xi’s are distinct without the loss of generality. V (Xj) is simply the set of all
points that are at least as close to Xj as to any other Xk. Let NN(X) = k such
that X ∈ V (Xk) for some k, which is the Voronoi cell that X belongs to. For
the cell V (XNN(X)) that contains X , we identity the estimator that achieves
the lowest empirical error at the sample point XNN(X) by defining the estimator

index of X as follows

iNN (X) = arg min
i=1,2,...,N

[f(XNN(X)) − f̂i(XNN(X))]
2.

That is, iNN (X) is the index of the estimator that achieves least empirical error
at the sample point XNN(X) nearest to X . Then the nearest neighbor projective

fuser [19] is defined as

f̂NN (X, f̂1(X), . . . , f̂N(X)) = f̂iNN (X)(X).

Despite the notational complexity, the idea of f̂NN is quite simple: f̂NN(X) is

f̂i(X) that achieves least empirical error at the nearest sample point to X .



5.3 Sample-Based Projective Fusers

The computation of fLE in general requires a complete knowledge of the distri-
bution PX . To address the case where such knowledge is not available, a method
was proposed in [15] that utilizes regression estimation methods to compute an

estimator Ê(X, f̂i) of E(X, f̂i), and utilizes the lower envelope of these estimators
in the computation of fuser. We now briefly outline the basic approach using the
cubic partitions with data-dependent offsets for d = 1. For a sequence {hl} of pos-
itive numbers, consider the partition of < given by θl = {[(r− 1)hl, rhl)|r ∈ Z}.
Let ψl[X ] denote the unique cell of θl that contains X . Then, the estimator of

E(X, f̂i) is given by

Ê(X, f̂i) =

l
∑

j=1

(Xj − f̂i(Xj))
21ψl[X](Xj)

n
∑

j=1

1ψl[X](Xj)
.

In other words, the estimator simply computes the mean of the error of f̂i within
the cell of θl that contains X . Consider the conditions: (i) ((X − f(Y ))2 < K
for some K > 0; (ii) lim

l→∞
hl → 0; and (iii) nhl → ∞ as l → ∞. Then, we have

∫

|E(X, f̂i) − Ê(X, f̂i)|
2dPX → 0 with probability 1 [8], regardless of the dis-

tribution PX . The fuser f̂LE is computed using Ê(X, f̂i) in place of E(X, f̂i).

The strong consistency of f̂LE method is shown under the boundedness of
(X − f(X))2, namely I(f̂LE) → I(fLE) as l → ∞ with probability 1 for any

distribution PX [15]. This result specifies the performance of f̂LE for sample
sizes approaching infinity and does not tell much when sample sizes are finite.
The implementation of f̂LE itself is tricky in that the choice of hl is not evident
if finite-sample performance is needed.

The individual function estimators f̂1, f̂2, . . . , f̂N could be quite varied, but
several of them satisfy certain smoothness or non-smoothness conditions. For
any function g : [−A,A]d 7→ <, let ‖ g(r) ‖∞= sup

r∈[−A,A]d
|g(r)|. A function

g(y) : [−A,A]d 7→ <a is Lipschitz with constant kg if for all y1, y2 ∈ [−A,A]d,
we have ‖ g(y1)− g(y2) ‖∞≤ kg ‖ y1 − y2 ‖∞ . The examples of smooth function
estimators include potential functions, sigmoid neural networks, smooth kernel
estimates, radial basis functions, linear and polynomial estimators.

Several function estimators are not Lipschitz with popular examples includ-
ing nearest neighbor and Nadaraya-Watson estimators. To address such cases we
consider the class of functions with bounded variation, which allows for disconti-
nuities and includes Lipschitz functions as a subclass. Consider one-dimensional
function h : [−A,A] 7→ <. For A < ∞, a set of points P = {y0, y1, . . . , yn} such
that −A = y0 < y1 < . . . < yn = A is called a partition of [−A,A]. The col-
lection of all possible partitions of [−A,A] is denoted by P [−A,A]. A function
g : [−A,A] 7→ < is of bounded variation, if there exists the total variationM such

that for any partition P = {y0, y1, . . . , yn}, we have
n
∑

k=1

|g(yk)−g(yk−1)| ≤M. A



multivariate function g : [−A,A]d 7→ < is of bounded variation if it is so in each
of its input variable for every value of the other input variables. The following are
useful facts about the functions of bounded variation: (i) not all continuous func-
tions are of bounded variation, e.g. g(y) = y cos(π/(2y)) for y 6= 0 and g(0) = 0;
(ii) differentiable functions on compact domains are of bounded variation; and
(iii) absolutely continuous functions, which include Lipschitz functions, are of
bounded variation.

The function estimators such as k-nearest neighbor, Haar wavelet estimators,
regression tree, regressogram and Nadaraya-Watson estimator (which all could
involve discrete jumps) satisfy the bounded variation property. Since Lipschitz
estimators over compact domains also have bounded variation, the latter is a
fairly general property satisfied by most of the widely-used estimators.

We consider that the function estimators f̂1, . . . , f̂N are of bounded variation.

Let each function estimator f̂i be of total variation Vi. For V =
N
∑

i=1

Vi, it is shown

in [19] that P
[

I(f̂NN ) − I(fLE) > ε
]

< δ for sample size

256

ε2

[

18

(

1 +
128V

ε

)

ln2(128/ε) + ln(16/δ)

]

.

Furthermore, I(f̂NN) → I(fLE) as l → ∞. This result establishes the analyt-

ical viability of f̂NN for finite samples. While the sample size estimate is not
necessarily within practical limits, the overall result itself is stronger than the
asymptotic consistency.

5.4 Computational Example

We consider the problem of estimating

f(X) = 0.02(12 + 3X + 7.2x2)(1.0 + cos(4πX))(1.0 + 0.8 sin(3πX/7))

based on a sample. Two samples each of size 200 (Fig. 1(a)) are used in training
the neural networks and fuser. Five feedforward neural networks are trained
using the backpropagation algorithm with different starting weights and different
learning rates as shown in Fig. 1(b). The performance of the estimators and fuser
is measured by the empirical error on the sample. The estimator 1 approximated
well only in the vicinity of X = 1, whereas estimator 2 is close to the function in
the vicinity of X = 0. Estimator 3 provided a good approximation at both ends
of the interval [0, 1] and is the best of the estimators. However, this estimator is
insensitive to the variations of f(X) in the middle of the interval [0, 1]. Estimator

4 performs the worst staying close to 0 for entire [0, 1]. The performance of f̂NN
is shown in Figure 1(c) which is uniformly as good as any of the estimators
across the entire interval. The best estimator 3 is used by the fuser for the most
of the interval [0, 1] except in the middle. It is interesting to note that the worst
estimator, namely, estimator 4, is used in the lowest portions of f(X), and indeed
is responsible for the better performance achieved by the fuser.
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Fig. 1. Nearest neighbor projective fuser for function estimators.

6 Conclusions

A generic sensor fusion problem is formulated for sensors whose measurements
are subject to unknown probability distributions. A brief overview of fuser design
methods is presented with a focus on finite sample performance guarantees. The
classes of isolation and projective fusers are described for the special cases of
classification and function estimation. Similar concepts have been studied in
multiple classifier systems [3, 23]. The methods described in this paper have been
applied in practice for combining ultrasonic and infrared sensor measurements
for robot navigation, prediction of embrittlement levels in light water reactors,
combining sensor readings of well data in methane hydrate explorations, and
combining radar measurements for target detection.

Several open problems remain in the generic sensor fusion problem as well as
in classification and function estimation. Often the sample bounds are too large
to be practical, and the performance equations do not provide uniform precision
in that the sensor with best bound is not necessarily the best. It would be in-
teresting to develop principles that bridge the gap between performance bounds
and actual performance. Also there has been a profusion of fusion concepts of
significant diversity, and it would be interesting to identify unifying principles
behind these developments.
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